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Abstract
In this paper we give a general method to solve a time-dependent Schrödinger
equation. The formalism developed is based on the quantum variational
principle conveniently ‘averaged’. In addition, we apply our method to study
the time-dependent systems in which the Hamiltonians are linear functions of
SU(1, 1) and SU(2) Lie algebras.

PACS numbers: 03.65.Ca, 03.65.Ge

1. Introduction

The explicitly time-dependent quantum systems have been a long standing mathematical
problem not yet completely solved in general. Various methods have been used to obtain
approximate solutions for such time-dependent problems. The adiabatic method has been one
of the most general and frequently used approximate methods for time-dependent quantum
systems [1]. A quantum adiabatic theorem, including the recent improvements due to Berry [2]
was derived in [3]. This derivation is based on the introduction of the averaged variational
principle. The necessity of ‘averaging’ appears as soon as one considers a pure state |ψ(t)〉
written as a linear combination of the reference instantaneous stationary eigenstate of the
Hamiltonian |ψ(t)〉 = ∑

n Cn(t)|n, �X(t)〉. Exploiting the decomposition of the evolution
operator method, Cheng and Fung [4] have studied the nonadiabatic generalization of Berry’s
result due to Aharonov and Anandan [5].

The existence of the invariant operator, introduced by Lewis and Riesenfeld [6], for such
time-dependent quantum systems allows one to find the exact quantum states in terms of the
eigenstates of the invariant operator up to some time-dependent phase factors.

In this paper we use the variational principle approach and show that the non-adiabatic
evolution amounts to replacing this principle by a well defined averaged version of them.
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In section 2, we give a derivation of the exact evolution of the quantum system by means
of the ‘averaged’ variational principle, and our results will be compared with those of the
evolution operator method of Cheng and Fung [4]. In section 3, we apply our general results
to study time-dependent SU(1, 1) and SU(2) quantum systems [7–10] and we end with two
special examples.

2. The quantum averaged variational principle

Consider a quantum system whose Hamiltonian H(t) is time dependent. In order to find the
evolution of the state

|ψ(t)〉 = U(t)|ψ(0)〉 (2.1)

where U(t) is the evolution operator, one must call for some variational principle and not for
the Schrödinger equation

δ

[ ∫ t

〈ψ(t ′)|i∂t ′ −H(t ′)|ψ(t ′)〉 dt ′
]

= 0 (2.2)

where the quantum mechanical Lagrangian LQ = 〈ψ(t)|i∂t − H(t)|ψ(t)〉 is a function of
the ‘ket’ |ψ(t)〉, its time derivative |ψ̇(t)〉 and the ‘bra’ 〈ψ(t)|. Since 〈ψ̇(t)| does not
appear in LQ, the Euler–Lagrange equation obtained from variation with respect to 〈ψ(t)|
leads to the Schrödinger equation (i∂t − H)|ψ(t)〉 = 0, if there is no restriction on |ψ(t)〉.
When considering adiabatic evolution, the usual variational principle has to be replaced by an
averaged version

δ

[ ∫ t

〈ψ(t ′)|i∂t ′ −H(t ′)|ψ(t ′)〉 dt ′
]

= 0. (2.3)

(The overbar means that one first calculates the expression in the angular brackets, then one
averages over the phases of stationary states before varying the integral.) This replacement is
justified in [3], where it is shown that the procedure of averaging leads to simple derivations of
the standard quantum adiabatic theorem and of his extension, namely the geometrical Berry
phase.

In the following, we extend the quantum averaged variational principle to an arbitrary
evolution. A judicious parametrization of the Hilbert space consists of choosing as basis
vectors the set of states {|n, t〉} generated from the set {|n, 0〉} by a time-dependent unitary
operator V (t) parametrized by certain time-dependent c-number variables, so that

V (t)|n, 0〉 = |n, t〉 (2.4)

and writing

|ψ(t)〉 =
∑
n

Cn(t)|n, t〉. (2.5)

Then, the trial state is parametrized by set c-number variables, the time development of which
is determined through the averaged variational principle.

Before showing that the right evolution can be recovered from the variational principle
conveniently averaged, it is useful to give the precise definition of the quantum averaging
denoted by an overline (. . .). To get the averageF(|ψ〉) of any functionalF of the state |ψ〉, one
first replaces, inF , the state |ψ(t)〉 by its expression |ψ(t)〉 = ∑

n Cn(t)|n, t〉. Each state |n, t〉
is then multiplied by an arbitrary phase factor eiαn :

∑
n Cn(t)|n, t〉 → ∑

n Cn(t) eiαn |n, t〉;
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finally F(|ψ〉) is obtained by averaging over the phases {αn} considered as independent,
uniformly distributed random variables:

F(|ψ〉) =
∫ 2π

0

∫ 2π

0
· · ·

∫ 2π

0
F

( ∑
n

Cn(t) eiαn |n, t〉
) ∏

n

dαn
2π
. (2.6)

With the above notations and definitions at hand, we are now in position to show that the
evolution of a pure quantum state can be obtained from the averaged variational principle. It
is easy to verify that the averaging procedure gives

δ

[ ∫ t

dt ′
∑
n

iC∗
nĊn − |Cn|2

(〈n, 0|V +H V − iV +V̇ |n, 0〉)
]

= 0. (2.7)

Then, the corresponding Euler–Lagrange equations with respect to the variables C∗
n , read

Cn(t) = Cn(0) exp

[
− i

∫ t

0
dt ′

(〈n, 0|V +H V − iV +V̇ |n, 0〉)
]
. (2.8)

The important implication of this results is clear. The quantum averaged variational
principle implies that the operator V + U is diagonal in the basis {|n, 0〉} with eigenvalue
exp

[ − i
∫ t

0 dt ′ (〈n, 0|V +H V − iV +V̇ |n, 0〉)].
This is of similar form to equations (2.17) and (2.18) of Cheng and Fung [4]. Cheng

and Fung decompose the evolution operator U as V R, R being chosen to be diagonal in the
basis {|n, 0〉} so as to facilitate the calculation of U ; |n, 0〉 evolves into |n, t〉 under V . In our
analysis, we do not need to suppose that the operator V + U is diagonal in the basis {|n, 0〉},
being a natural implication of the quantum averaged variational principle.

Now an important remark can be made. The operator V (t) depends on time through a set
of parameters V ( �X(t)), therefore the Lagrangian function depends on two types of variables

(Cn, Ċn) and ( �X, �̇X). The complement to equation (2.8) is obtained by making variation
with respect to the parameters �X(t), and the corresponding Euler–Lagrange equations give the
following equations:[
∂

∂Xi

(
〈n, 0|iV + ∂V

∂Xj
|n, 0〉

)
− ∂

∂Xj

(
〈n, 0|iV + ∂V

∂Xi
|n, 0〉

)]
Ẋi

= ∂

∂Xj
(〈n, 0|V +H V |n, 0〉) (2.9)

which determine the time evolution of external parameters characterizing the wavefunction
and couple those parameters dynamically to the quantum degrees of freedom.

Before closing this section, let us consider:

(i) The basis vectors {|n, 0〉} are chosen to be eigenstates of the initial condition operator
I (0) (for example, the HamiltonianH(0)) at time t = 0 with constant eigenvalues δn and
V (t)|n, 0〉 = |n, t〉 is an eigenstate at any time of any dynamical invariant U(t) I (0)U+(t)

of the Hamiltonian H ; the solution of the equation ∂I/∂t = ih̄[I,H ]. Then, according
to the general theory of Lewis and Riesenfeld, the evolution operator U(t) will satisfy the
following:

U(t) |n, 0〉 = exp

[
− i

∫ t

0
dt ′

(〈n, 0|V +H V − iV +V̇ |n, 0〉)
]
V (t) |n, 0〉 (2.10)

which implies that the operator V + U is diagonal in the basis {|n, 0〉}.
(ii) If we employ the adiabatic assumption, then the state V (t)|n, 0〉 = |n, t〉 is an

instantaneous eigenstate of the Hamiltonian H(t) at any time with eigenvalues En(t),
then the result represented in (2.8) and (2.10) is exactly the result obtained by Berry [2].
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Then as already noted [3, 4] adiabaticity implies that the operator V + U is diagonal in the
basis {|n, 0〉}. In addition, the time-evolution of external parameters characterizing the
trial wavefunction reduces to[
∂

∂Xi

(
〈n, �X|i ∂

∂Xj
|n, �X〉

)
− ∂

∂Xj

(
〈n, �X|i ∂

∂Xi
|n, �X〉

)]
Ẋi = ∂

∂Xj
En( �X). (2.11)

Introducing a ‘vector potential’ in parameters space Aj( �X) = 〈n, �X|i ∂
∂Xj

|n, �X〉, hence
we can rewrite (2.11) in the form

Fij Ẋi = ∂

∂Xj
En( �X) (2.12)

where Fij = ∂iAj − ∂jAi is an ‘electromagnetic tensor’ in parameter space.

It is quite striking to note that the averaged variational principle can be taken as a definition
for adiabatic quantum motion which is an approximation to the full dynamics, when the state
|ψ(t)〉 is written as a linear combination of instantaneous eigenstates of the HamiltonianH(t).
However, it can also be taken as a mathematical formulation of the exact quantum evolution,
when the state |ψ(t)〉 is expanded in terms of the eigenstate of the invariant operator I (t).

3. SU (1, 1) and SU (2) time-dependent quantum systems

We now want to apply the results of the previous section to the extensively studied [7–10]
time-dependent SU(1, 1) and SU(2) quantum systems, described by the Hamiltonian

H(t) = ω(t)K0 +G(t)
(
K+eiϕ(t) +K−e−iϕ(t)

)
(3.1)

where ω(t), G(t), and ϕ(t) are functions of time. K0 is a Hermitian operator, while
K+ = (K−)+. The commutation relations of the operators are[

K0,K±
] = ±K±

[
K+,K−

] = DK0. (3.2)

The Lie algebra of SU(1, 1) and SU(2) consists of the generators K0 and K± corresponding
to D = −2 and 2 in the commutation relations (3.2), respectively.

Since the time evolution operator U can be expressed as an exponential of linear
combination of Lie algebra of SU(1, 1) and SU(2) generators and can also be factorized
in a variety of ways [8, 11], it is natural to consider our V (t) in the form

V (t) = exp

{
λ(t)

2

(
K+e−iβ(t) −K−eiβ(t)

)}
(3.3)

that corresponds to the coherent states generator of the SU(1, 1) and SU(2) Lie algebras [12].
The functions λ(t) and β(t) are arbitrary real time-dependent parameters. If we now choose
as basis vectors the eigenstate |n〉 of K0, i.e. (K0|n〉 = kn|n〉) and writing the test vector as
|ψ(t)〉 = ∑

n Cn(t) V (t) |n〉, then, with the results (2.8) and (2.9) in mind, one gets

Cn(t) = Cn(0) exp

[
− i

∫ t

0
dt D

(
ω

D
+ (β̇ − ω) 4

g2
sin2 g

4
λ− 2

g
G sin

g

2
λ cos(ϕ + β)

)]

(3.4)

and the complement (equation (2.9)) to this equation gives the auxiliary equations by which λ
and β are determined for given values of G, ϕ and ω,

λ̇ = 2G sin(ϕ + β)
−ω − β̇
g

sin
g

2
λ = G cos

g

2
λ cos(ϕ + β)

(3.5)
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where g = √
2D. In the derivation of equations (3.4) and (3.5) use is made of commutation

relations (3.2) and of the following identities:

V +K+V = K+ cos2 g

4
λ−K−e2iβ sin2 g

4
λ− D

g
K0eiβ sin

g

2
λ

V +K−V = K− cos2 g

4
λ−K+e−2iβ sin2 g

4
λ− D

g
K0e−iβ sin

g

2
λ

V +K0V = K0 cos
g

2
λ +

1

g

(
K+e−iβ +K−eiβ

)
sin
g

2
λ

iV + ∂V

∂t
= −2K0β̇ sin2 g

4
λ +K+e−iβ

(
i
λ̇

2
+
β̇

g
sin
g

2
λ

)
+K−eiβ

(
−i
λ̇

2
+
β̇

g
sin
g

2
λ

)
.

(3.6)

The auxiliary equations (3.5) can be easily linearized by the following changes of variables
(2/g)tg(λg/4)e−iβ = {ig2q̇eiϕ}/{Gq} which reduces the problem to finding a complex
function q(t) solution of the following second-order linear differential equation:

q̈ −
{
Ġ

G
− i(ϕ̇ + ω)

}
q̇ +

4

g2
G2q = 0 (3.7)

which is in fact crucial for solving the exact quantum evolution. This is the equation of motion
for a time-dependent generalized damped oscillator [13] when g = ±2 (SU(2) systems). But
wheng = ±2i (SU(1, 1) systems) this equation corresponds to the time-dependent generalized
inverted damped oscillator [14]. Here the friction is imaginary, 1/G andG2 correspond to the
mass and the frequency, respectively. We can see that the solution of the quantum problem
may be solved either in terms of the classical solution of the equation of motion associated
with the generalized Caldirola–Kanai Hamiltonian, or associated to the inverted one. After
solving this equation, its solution q(t) gives λ(t) and β(t). As a matter of practical interest we
assume that ϕ(t) has the form

ϕ(t) = −
∫ t

0
dt ′ω(t ′) (3.8)

with this choice of ϕ equation (3.7) has the special solution

q(t) = q(0) cos

( ∫ t

0

2G

g
dt + θ0

)
(3.9)

and consequently

λ(t) = ±2
∫ t

0
G(t ′) dt ′ β(t) = ∓π

2
+

∫ t

0
dt ′ ω(t ′). (3.10)

Substitution of (3.10) into (3.4) yields

Cn(t) = Cn(0) exp

[
− ikn

∫ t

0
dt ′ ω(t ′)

]
. (3.11)

We shall now consider two special examples, the bosonic realization of the SU(1, 1) Lie
algebra in terms of creation and annihilation operators a+ and a:

K+ = 1
2 (a

+)2 K− = 1
2 (a)

2 K0 = 1
2 (a

+a + 1
2 ) (3.12)

and the realization of the SU(2) Lie algebra in terms of spin operators J

K± = J± K0 = J3. (3.13)

In fact, 〈n|K0|n〉 should be substituted by n + 1/2 or n + 3/4 in the boson realization of
SU(1, 1) Lie algebra (3.12) and by n in the realization of SU(2) Lie algebra (3.13). If the
characteristic parametersG, ω are constant and ϕ = −ωt , the first example reduces to a well
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known model in nonlinear quantum optics, namely the degenerate parametric oscillator with
classical pumps, and the second to a familiar model in magnetic resonance, a particle with spin
J in a magnetic field which consists of a static field along the z-axis plus a time-dependent
rotating one perpendicular to it with frequency ω. Therefore, the exact quantum solution can
be obtained from the classical solutions (3.8) and (3.9) as

q(t) = q(0) cos((2G/g)t + θ0) λ(t) = ±2Gt β(t) = ∓π
2

+ ωt (3.14)

for both SU(1, 1) and SU(2) systems depending on D = ±2.
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Magister Thesis Université de Sétif, unpublished
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